Ask Ethan: Has the JWST disproven the Big Bang? - Big Think

2022-09-19 04:10:13 By : Mr. Martin Lin

A recent revolutionary assertion has gone viral, claiming that the Big Bang never happened, and that the latest data from the James Webb Space Telescope (JWST) has proven it. The notion of the Big Bang has never sat well with many — all the way from its earliest incarnations in the 1920s (via Georges Lemaître) and the 1940s (from George Gamow; apparently you had to be named “George” to realize this) — and has been continuously challenged since its inception. However, the evidence has remained overwhelmingly in its favor ever since the 1960s, and no other serious competitors have ever been able to reproduce its successes. Which leads one to wonder: what are the merits, if any, of this latest claim? Could it be true, and if so, how and why?

That claim has provoked identical questions from many, including: James Laing-Smith, Marc Van Lysebetten, David Siegel (no relation), Jeff Humphrey, and Patreon supporter Pedro Teixeira. They all inquire something akin to:

“I read an article by LPPFusion, saying the new [JWST] pictures cast doubt on the Big Bang. It has something to do with redshift and the size and smoothness of galaxies, and it’s all due to plasma and proves their fusion theories.”

Indeed, this is roughly the claim that’s been made. Let’s walk through what the Big Bang actually states, what the new JWST images show, what the author is claiming when they say “The Big Bang never happened,” and what we can scientifically conclude based upon the full suite of evidence. Here we go!

Originally, the Big Bang was a simple idea that grew out of three facts, all put together.

By combining these three facts, we’d conclude that the Universe — if it’s expanding and becoming less dense today — must have been smaller and denser in the past. We can extrapolate this back farther and farther, to even very early times if we like, and recognize that our modern Universe must have emerged from a denser, smaller, more uniform state in the very distant past.

The first person to synthesize this information together was Georges Lemaître, who did it in 1927, although others would independently come to the same conclusion, including Howard Robertson in 1928, Edwin Hubble in 1929, and Arthur Walker a few years later.

Over time, we were able to derive many more consequences from the Big Bang, including that the early state must have been hotter as well as denser, and that as the Universe expands it also cools. This allowed us to predict:

All of these aspects of the Big Bang have been verified and validated, ruling out a great many alternatives that cannot reproduce these successes. Today, there are three additional ingredients that we’ve learned (and tested and verified!) are also present in the Universe: dark matter, which clumps and gravitates but doesn’t collide with normal matter or photons, dark energy, which behaves as a form of energy inherent to space itself, and cosmic inflation, which limits how far back into the past we can extrapolate the hot Big Bang before matter-and-radiation no longer dominated the energy contents of the Universe.

This picture enables us to do something remarkable. Inflation allows us to describe the initial conditions of the Universe at the start of the hot Big Bang: how hot and dense it was, what the initial spectrum of density imperfections were — including that were all adiabatic, gaussian random fluctuations — and what the magnitude of these fluctuations were on all cosmic scales. Our knowledge of the Standard Model, plus the additions of dark matter and dark energy, enable us to state what the various types, energies, and abundances of all the different species of energy were at all cosmic times.

From that starting point, our knowledge of the laws and interactions that govern the Universe enables us to time-evolve these initial conditions from the start of the hot Big Bang all the way up through the present day. We can make both theoretical predictions and perform numerical simulations that tell us what should arise, and when, in an expanding Universe that begins with a hot Big Bang and the properties we’ve determined it ought to have. The agreement between theory and observation is spectacular, and although a few puzzles still remain, no serious challenger to this paradigm has ever emerged, from the mid-1960s onward.

It might be hard to believe, but we only started seeing our very first science results from the JWST in mid-July, 2022. (That recently, really!) Perhaps the biggest surprise — other than the astounding technical performance of the telescope, which is arguably twice as good as it was designed to achieve on many fronts — is what it’s seen in the realm of galaxies. While we knew JWST would push far past what Hubble’s limited capabilities have seen, we had no idea its performance would be so revolutionary in such an early stage of its observation campaigns.

This is interesting, particularly to scientists, in a lot of ways. We mentioned earlier that the fluctuations that the Universe was born with had a particular set of properties, many of which probably sounded like jargon to you. In plain English, what this means for all cosmic (i.e., scales on which galaxies form) distance scales, is that:

Even if we take these rare, large initial fluctuations and let them grow at the maximum allowable rate, it’s very difficult to get enough galaxies that will be massive enough, evolved enough, and that will form early enough to be consistent with JWST’s observations.

This new set of observations presents an exciting challenge for our modern cosmological theories, and an exciting challenge for cosmologists to try and puzzle out. Why do these galaxies have the properties that they do? Can our standard model of cosmology be reconciled with these observations? And if not, what sort of implications does that have for what else we might learn about dark matter, the expanding Universe, or other aspects of our cosmic history? These are all legitimate research questions that people are actively working on right now, at this very moment.

There are some people that seem to have it baked into their bones to disagree with whatever it is that everyone else thinks, regardless of whatever it is that the evidence shows. In science, this can be a healthy attitude if done correctly, as it’s frequently up to us to be our own harshest critics. Whatever hypotheses we have, it’s up to us to try and knock them down, to scrutinize their various aspects closely and scrupulously, and to look for any discrepancies that might poke holes in the standard, accepted picture.

But there’s a cardinal sin you absolutely must not commit: you cannot ignore the full suite of evidence at hand, particularly the bits that contradict your own position, while focusing on just a few cherry-picked pieces of evidence that support it. This is the hallmark of unscrupulous contrarians, crackpots, and heretics everywhere, as well as those who support long-discredited theories.

The one asserting that “The Big Bang never happened” in this latest recent viral… messy situation, let’s politely call it, is Eric Lerner, a longtime advocate of an alternative cosmology to the mainstream, known either as a plasma cosmology or the electric universe.

When it was first proposed by Hannes Alfvén in the mid-1960s, most physicists had not even thought to apply the rules of electromagnetism to the realm of astrophysics, and yet with such high energies, large numbers of charged particles, and dense environments, it stood to reason that electric and magnetic fields could get quite large indeed.

Alfvén, pretty much single-handedly, wound up developing the field of physics that’s now known as magnetohydrodynamics (MHD), which plays incredibly important roles:

For his revolutionary work, Alfvén won the 1970 Nobel Prize, and MHD is now an essential part of a wide variety of astrophysical applications.

But Alfvén went a step farther when he proposed his plasma cosmology, asserting that perhaps, on cosmic scales, gravity isn’t all that important, and that instead, electric and magnetic fields and forces were responsible for shaping the Universe. In this model of the Universe, a wide variety of observables with a standard explanation within the Big Bang paradigm would need to be replaced with a wild alternative.

Although this sounds like a wild idea, you have to remember that the Big Bang also has a lot of extrapolations in it, none of which were supported by the evidence back when the idea was first being proposed and developed. Regardless of what our preferences are, however, science progresses by one method and one method only: by comparing the predictions that our differing ideas make with the actual, real Universe that we inhabit. Astronomically, we have no choice but to look to the Universe itself to determine the answer to the question, “What is it actually doing, and which description is most accurate?”

Things get really bad for plasma cosmology advocates really fast if they dare to genuinely confront their ideas with observations of the Universe itself.

It’s much easier to make a sensational, attention-grabbing claim than it is to do the heavy lifting of going through the full suite of evidence and drawing a responsible, scientifically accurate conclusion. Fortunately, “shouting the loudest” won’t get you very far among scrupulous scientists, and the plasma cosmology will continue to languish in scientific obscurity: exactly where it belongs on the basis of its lack-of-merits. Whenever you dare to ask the Universe, “What is true?” you’d better be prepared to listen to what it tells you. If you don’t, whatever you do next cannot be rightfully called science in any way.

Send in your Ask Ethan questions to startswithabang at gmail dot com!

Related Starts With A Bang The Big Bang no longer means what it used to As we gain new knowledge, our scientific picture of how the Universe works must evolve. This is a feature of the Big Bang, not a bug. Starts With A Bang The unexpected science you missed from James Webb’s first images We knew we’d find galaxies unlike any seen before in its first deep-field image. But the other images hold secrets even more profound. Starts With A Bang 10 surprising facts about the Big Bang Theory It’s the origin of our entire observable Universe, but it’s still not the very beginning of everything. Starts With A Bang 5 revolutionary cosmic ideas that turned out to be wrong No matter how beautiful, elegant, or compelling your idea is, if it disagrees with observation and experiment, it’s wrong. Hard Science No, the James Webb Space Telescope did not disprove the Big Bang Unexpected images of galaxies from the James Webb Space Telescope do not disprove the Big Bang. There are other likelier explanations.

Up Next Hard Science No, the James Webb Space Telescope did not disprove the Big Bang Unexpected images of galaxies from the James Webb Space Telescope do not disprove the Big Bang. There are other likelier explanations.